LEs5on Determining When Three Lengths Form a Triangle

EXPLORE ACTIVITY THERS 6.8.A

Drawing Three Sides

Use geometry software to draw a triangle whose sides have the following lengths: $\mathbf{2}$ units, $\mathbf{3}$ units, and $\mathbf{4}$ units.

A Draw three line segments of 2,3 , and 4 units of length.

B Let $\overline{A B}$ be the base of the triangle. Place endpoint C on top of endpoint B and endpoint E on top of endpoint A. These will become two of the vertices of the triangle.

C Using the endpoints C and E as fixed vertices, rotate endpoints F and D to see if they will meet in a single point.

The line segments of 2,3 , and 4 units
do / do not form a triangle.

D Repeat Steps 2 and 3, but start with a different base length. Do the line segments make the exact same
 triangle as the original?

The line segments do / do not make the same triangle as the original.

E Draw three line segments of 2, 3, and 6 units. Can you form a triangle with the given segments?

The line segments of 2,3 and 6 units do / do not form a triangle.

Reflect

1. Conjecture Try to make triangles using real world objects such as three straws of different lengths. Find three side lengths that form a triangle and three side lengths that do not form a triangle. What do you notice about the lengths that do not form a triangle?
\qquad
\qquad
\qquad

Using Triangle Side Length Relationships

You saw in the Explore Activity that you cannot always form a triangle from three given line segments.

Triangle Inequality

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Can form a triangle

Cannot form a triangle

You can use this relationship to determine if given side lengths can form a triangle.

Animated Math
©) my.hrw.com

EXAMPLE 1

Tell whether a triangle can have sides with the given lengths.
A $11 \mathrm{~cm}, 6 \mathrm{~cm}, 13 \mathrm{~cm}$
STEP 1 Find the sum of the lengths of each pair of sides.

$$
11+6 \stackrel{?}{>} 136+13 \stackrel{?}{>} 11 \quad 11+13 \stackrel{?}{>} 6
$$

STEP 2 Compare the sum to the third side.

The sum of any two of the given lengths is greater than the third length.

- So, a triangle can have these side lengths.

B $5 \mathrm{ft}, 15 \mathrm{ft}, 9 \mathrm{ft}$
STEP 1 Find the sum of the lengths of each pair of sides.

$$
5+15 \stackrel{?}{>} 9 \quad 15+9 \stackrel{?}{>} 5 \quad 5+9 \stackrel{?}{>} 15
$$

STEP 2 Compare the sum to the third side.
$20>9 \checkmark \quad 24>5 \checkmark \quad 14 \ngtr 15$
The sum of any two of the given lengths is not greater than the third length.

Explain why a triangle with sides measuring 5 in., 5 in., and 1 foot cannot be constructed.

- So, a triangle cannot have these side lengths.

YOUR TURN

Tell whether a triangle can have sides with the given lengths. Explain.
2. $3 \mathrm{~cm}, 6 \mathrm{~cm}, 9 \mathrm{~cm}$
3. $4 \mathrm{~m}, 5 \mathrm{~m}, 8 \mathrm{~m}$

Personal Math Trainer

Using Inequalities to Represent the Relationship Between Triangle Side Lengths

You can use what you know about the relationship among the lengths of the

Math On the Spot
(C) my.hrw.com sides of a triangle to write an inequality. Then you can use the inequality to determine if a given value can be the length of an unknown side.

EXAMPLE 2

TEKS 6.8.A

Which value could be the length of x ?

$$
x=15 \quad x=10
$$

STEP 1
$4+9>x$
$4+9>x$

Write an inequality.
STEP $2 \quad 4+9 \stackrel{?}{>} 15 \quad 4+9 \stackrel{?}{>} 10$
Substitute each value for x.

STEP $3 \quad 13 \ngtr 15 \quad 13>10 \checkmark$
Compare the sum to the given value of x.

- The value that could be the length of x is $x=10$.

Personal Math Trainer
Online Assessment and Intervention
(0) my.hrw.com

YOUR TURN

4. Which value could be the length of x ?

$$
x=35 \quad x=13
$$

Guided Practice

Determine whether a triangle can have sides with the given lengths.
Explain. (Explore Activity and Example 1)

1. $3 \mathrm{~cm}, 10 \mathrm{~cm}, 8 \mathrm{~cm}$
\qquad
2. $10 \mathrm{ft}, 10 \mathrm{ft}, 18 \mathrm{ft}$
\qquad
3. $30 \mathrm{in} ., 20 \mathrm{in} ., 40 \mathrm{in}$.
\qquad
4. $16 \mathrm{~cm}, 12 \mathrm{~cm}, 3 \mathrm{~cm}$
\qquad
5. Which value could be the length of x ? (Example 2)
$x=29$
$x=45$

ESSENTIAL QUESTION CHECK-IN
6. Explain how you can determine whether three metal rods can be joined to form a triangle.
\qquad
\qquad

15.1 Independent Practice

10. Geography The map shows the distance in air miles from Houston to both Austin and San Antonio.

a. What is the greatest possible distance from Austin to San Antonio?
\qquad
b. How did you find the answer?
\qquad
\qquad
\qquad
\qquad
c. What is the least possible distance from Austin to San Antonio?
\qquad
d. How did you find the answer?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11. Critical Thinking Two sides of an isosceles triangle measure 3 inches and 13 inches respectively. Find the length of the third side. Explain your reasoning.
\qquad
\qquad
\qquad
\qquad
12. Critique Reasoning While on a car trip with her family, Erin saw a sign that read, "Amarillo 100 miles, Lubbock 80 miles." She concluded that the distance from Amarillo to Lubbock is $100-80=20$ miles. Was she right? Explain.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
13. Make a Conjecture Is there a value of n for which there could be a triangle with sides of length $n, 2 n$, and $3 n$? Explain.
\qquad
\qquad
\qquad
14. Persevere in Problem Solving A metalworker cut an 8 -foot length of pipe into three pieces and welded them to form a triangle. Each of the 3 sections measured a whole number of feet in length. How long was each section? Explain your reasoning.

