Determining When 5.1 Three Lengths Form a Triangle

TEKS Expressions, equations, and relationships— **6.8.A** Extend previous knowledge of triangles and their properties to include . . . determining when three lengths form a triangle.

ESSENTIAL QUESTION

How can you use the relationship between side lengths to determine when three lengths form a triangle?

EXPLORE ACTIVITY

of the triangle.

Drawing Three Sides

Use geometry software to draw a triangle whose sides have the following lengths: 2 units, 3 units, and 4 units.

B Let \overline{AB} be the base of the triangle. Place endpoint

C on top of endpoint *B* and endpoint *E* on top of endpoint *A*. These will become two of the vertices

C Houghton Mifflin Harcourt Publishing Company

A Draw three line segments of 2, 3, and 4 units of length.

C Using the endpoints C and E as fixed vertices, rotate endpoints F and D to see if they will meet in a single point.

The line segments of 2, 3, and 4 units **do / do not** form a triangle.

P Repeat Steps 2 and 3, but start with a different base length. Do the line segments make the exact same triangle as the original?

The line segments **do / do not** make the same triangle as the original.

E Draw three line segments of 2, 3, and 6 units. Can you form a triangle with the given segments?

The line segments of 2, 3, and 6 units **do / do not** form a triangle.

EXPLORE ACTIVITY (cont'd)

Reflect

1. **Conjecture** Try to make triangles using real world objects such as three straws of different lengths. Find three side lengths that form a triangle and three side lengths that do not form a triangle. What do you notice about the lengths that do not form a triangle?

Using Triangle Side Length Relationships

You saw in the Explore Activity that you cannot always form a triangle from three given line segments.

You can use this relationship to determine if given side lengths can form a triangle.

You can use what you know about the relationship among the lengths of the sides of a triangle to write an inequality. Then you can use the inequality to determine if a given value can be the length of an unknown side.

EXAMPLE 2

Math On the Spot

my.hrw.com

Guided Practice

ete pl	ermine whether a triangle can have sides with the given lengths. ain. (Explore Activity and Example 1)
1.	3 cm, 10 cm, 8 cm
2.	10 ft, 10 ft, 18 ft
3.	30 in., 20 in., 40 in.
4.	16 cm, 12 cm, 3 cm
5.	Which value could be the length of <i>x</i> ? (Example 2)
	$x = 29 \qquad x = 45 \qquad 17 \qquad 22$
	ESSENTIAL QUESTION CHECK-IN
6.	Explain how you can determine whether three metal rods can be joined to form a triangle.

Class

Personal Math Trainer Online Assessment and Intervention

 A map of a new dog park shows that it is triangular and that the sides measure 18.5 m, 36.9 m, and 16.9 m. Are the dimensions correct? Explain your reasoning.

8. Choose a real world object that you can

cut into three different lengths to form a triangle. Find three side lengths that form a triangle and three lengths that do not form

a triangle. For each triangle, give the side lengths and explain why those lengths do

15.1 Independent Practice

10. Geography The map shows the distance in air miles from Houston to both Austin and San Antonio.

- **a.** What is the greatest possible distance from Austin to San Antonio?
- **b.** How did you find the answer?

- **c.** What is the least possible distance from Austin to San Antonio?
- d. How did you find the answer?

Triangle 2: _____

or do not form a triangle.

Triangle 1:

9. Could the three sides of a triangular shopping mall measure $\frac{1}{2}$ mi, $\frac{1}{3}$ mi, and $\frac{1}{4}$ mi? Show how you found your answer.

	and 13 inches respectively. Find the length of the third side. Explain your reasoning.	
H	FOCUS ON HIGHER ORDER THINKING	Work Area
12.	Critique Reasoning While on a car trip with her family, Erin saw a sign that read, "Amarillo 100 miles, Lubbock 80 miles." She concluded that the distance from Amarillo to Lubbock is $100 - 80 = 20$ miles. Was she right? Explain.	
13.	Make a Conjecture Is there a value of <i>n</i> for which there could be a triangle with sides of length <i>n</i> , 2 <i>n</i> , and 3 <i>n</i> ? Explain.	
14.	Persevere in Problem Solving A metalworker cut an 8-foot length of pipe into three pieces and welded them to form a triangle. Each of the 3 sections measured a whole number of feet in length. How long was each section? Explain your reasoning.	

.